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Abstract

This paper studies the case of the representation of a binary relation via a numerical

function with threshold (error) depending on both compared alternatives. The error is

considered to be multiplicative, its value being either directly or inversely proportional

to the values of the numerical function.

For the first case, it is proved that a binary relation is a semiorder. Moreover, any

semiorder can be represented in this form. In the second case, the corresponding binary

relation is an interval order. � 2002 Published by Elsevier Science Inc.
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1. Introduction

Rational choice paradigm lies in the basis of models of decision making,
economics and psychology. The very core of this paradigm is that preferences
of an individual over objects are transitive as well as her indifference relation.

In the 19th century, Fechner [12] pointed out that ‘‘the discrimination re-
lation between stimulus is generally not transitive: this can be explained by the
concept of differential threshold’’. Amstrong [8–10] drew attention to the fact
that an indifference relation is not transitive because the human mind is not
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necessarily capable of perfect discrimination, and introduced the notion of
semiorders. A semiorder was precisely axiomatized by Luce [15] who intro-
duced a new numerical representation which involves criterial estimates with a
constant error. The limitation of these studies was that they all worked with
constant errors.

Wiener [19] was the first to study theoretically the problem of evaluation of
alternatives with an error that depends on one of the alternatives under pair-
wise comparison. His paper showed that interval order is an important concept
for analysis of temporal events, each of which occurs over some time span. In
this analysis, each measurement is given as an interval instead of a single point.
To be more precise, event x precedes event y when x ends before y begins.
Sholomov and Yudin [18] showed the relation between the problem under
study and inference construction in the theory of databases. Aleskerov and
Vol’skiy [7] investigated the problem of numerical representation of binary
relations where the error function is dependent on both of the compared al-
ternatives was investigated. Later in Aleskerov [5,6], Agaev and Aleskerov [4],
and Aizerman and Aleskerov [3] particular cases of this problem were con-
sidered, one of them being the case where an error function is additive on its
arguments. In Abbas and Vincke [1] and in Fodor and Roubens [14], the cases
where the error function satisfies the triangle inequality were considered. Al-
though these studies were significant improvements over models that used
constant error, none of them tackled with multiplicative error functions
without any restrictions.

This paper aims to analyze the case where the error function eðx; yÞ depends
on both compared alternatives x and y and is multiplicative. The underlying
assumption is that the error function of alternatives, that is eðxÞ, depends on
the numerical function uðxÞ. Analyzing the problem with this set of assump-
tions will be helpful in capturing the differences between the sensitivity levels of
the preferences individuals, e.g., in various social strata. In Section 2 all pre-
liminary notions and basic definitions are given. Section 3 contains the results
on numerical representation of binary relations where the multiplicative error
function depends on both of the compared alternatives x and y.

2. Preliminary notions

Consider the finite set A of alternatives. A binary relation on a set A is a set
of ordered pairs ðx; yÞ with x 2 A and y 2 A. xPy and xP cy refer to ðx; yÞ 2 P
and ðx; yÞ 62 P , respectively.

Definition 1. A binary relation P is said to have a numerical representation via
a numerical function with error if there exist two real-valued functions uð�Þ and
d such that
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xPy () uðxÞ � uðyÞ > d: ð2:1Þ

This means that there exists an insensitivity zone (or measurement error) d
in which these alternatives can be considered as indifferent in terms of choice
even if their utilities are different. For example, although the distinction be-
tween one and three cubes of sugar in a coffee makes a difference in taste, we
would not be able to differentiate between the tastes of one and two cubes or
two and three cubes. In other words, we are indifferent between n cubes and
nþ 1 cubes, yet have a definite preference between one cube and 10 cubes.

Definitions of special types of binary relations – those of interval order and
semiorder (for detailed studies see, e.g., [11,13,15,17]) are provided below.

Definition 2. An irreflexive binary relation P is called an interval order if

8x; y; z;w 2 A xPy and zPw ) xPw or zPy

an interval order which satisfies the condition

8x; y; z;w 2 A xPy and yPz ) xPw or wPz

is called a semiorder.

It can be easily seen that the class of semiorders is a proper subset of the
class of interval orders.

Depending on the form of the function d one can obtain different types of
binary relations P in (2.1): P is a semiorder if and only if the constant error
function d is non-negative, d ¼ constantP 0 [15]; P is an interval order if and
only if the error function dð�Þ is a non-negative real-valued function defined on
the set A, d ¼ eðxÞP 0 [13]. If the assumption that d is non-negative is relaxed,
then one can cover a more general class of relations – coherent bi-orders and
bi-orders, respectively (see [11]).

In [1–5,7], the model is studied in which e in (2.1) depends on both of the
compared alternatives x and y. This means that the error function dð�; �Þ is a
real-valued function defined on the set A� A. For this case (2.1) can be ex-
pressed as

xPy () uðxÞ � uðyÞ > dðx; yÞ: ð2:2Þ

It has been shown that any acyclic binary relation can be represented in this
way if and only if d is non-negative and any binary relation has such a nu-
merical representation if and only if d is not restricted. For the case when dð�; �Þ
additively depends on eðxÞ and eðyÞ, i.e.,

dðx; yÞ ¼ eðxÞ þ eðyÞ

the corresponding P is an interval order (see [3,5]).
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3. The case of a multiplicative error function

Now consider the case where the error function dð�; �Þ is multiplicative,
i.e.,

dðx; yÞ ¼ eðxÞ � eðyÞ
and, moreover, the function e is dependent in a different way on the value of the
numerical function uð�Þ.

Two such cases are studied. In one of them, the error value decreases when
its numerical value increases. This corresponds to the case where alternatives
with small numerical values are considered to be similar. The second case is
opposite-error value of an alternative increases along with its numerical val-
ues, which corresponds to the case where alternatives with high utilities are
considered to be similar. We can exemplify these two cases in the following
way: In the first case, an affluent man does not feel the need to differentiate
between the prices in the supermarket and the local bazaar, being both
comparatively cheap. On the contrary, in the second case, a poor man
would not to be able to distinguish between two luxury cars because of their
inaccessibility.

Theorem 3.1. Let P have a numerical representation with an error of type (2.2).
Here the function uð�Þ is positive, dð�; �Þ is multiplicative, i.e., 8x; y; dðx; yÞ ¼
eðxÞ � eðyÞ; and the function eðxÞ depends on uðxÞ in such a way that eðxÞ ¼ a=uðxÞ
with a > 0. Then P is an interval order.

Proof.
(i) P is irreflexive. Since dðx; xÞ ¼ eðxÞ � eðxÞ ¼ ða=uðxÞÞða=uðxÞÞ ¼ a2=ðu2ðxÞÞ

> 0; then dðx; xÞ > 0 ¼ uðxÞ � uðxÞ. Thus xP cx:
(ii) P satisfies strong intervality. Assume the contrary xPy ^ zPw ^ xP cw^

zP cy. Then

uðxÞ � uðyÞ > a
uðxÞ

a
uðyÞ ; ð3:1Þ

uðzÞ � uðwÞ > a
uðzÞ

a
uðwÞ ; ð3:2Þ

uðxÞ � uðwÞ6 a
uðxÞ

a
uðwÞ ; ð3:3Þ

uðzÞ � uðyÞ6 a
uðzÞ

a
uðyÞ : ð3:4Þ

Adding (3.1) and (3.2), and (3.3) and (3.4), we obtain

a
uðxÞ

a
uðyÞ þ

a
uðzÞ

a
uðwÞ <

a
uðzÞ

a
uðyÞ þ

a
uðxÞ

a
uðwÞ :
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Multiply both sides by uðxÞuðyÞuðzÞuðwÞ=a2, we obtain

uðxÞuðyÞ þ uðzÞuðwÞ < uðxÞuðwÞ þ uðyÞuðzÞ:

Then uðzÞuðwÞ � uðyÞuðzÞ < uðxÞuðwÞ � uðxÞuðyÞ; so
uðzÞðuðwÞ � uðyÞÞ < uðxÞðuðwÞ � uðyÞÞ: ð3:5Þ

Moreover, (3.1) and (3.3) imply

u2ðxÞuðyÞ � uðxÞu2ðyÞ > a2 P u2ðxÞuðwÞ � uðxÞu2ðwÞ: ð3:6Þ

Inequalities (3.2) and (3.4) imply

u2ðzÞuðwÞ � uðzÞu2ðwÞ > a2 P u2ðzÞuðyÞ � uðzÞu2ðyÞ: ð3:7Þ

Consider three possible cases in (3.5):
1. uðwÞ > uðyÞ;
2. uðwÞ < uðyÞ;
3. uðwÞ ¼ uðyÞ:

Case 1: uðwÞ > uðyÞ ) uðxÞ > uðzÞ;
From (3.6) u2ðxÞðuðwÞ � uðyÞÞ < uðxÞðu2ðwÞ � u2ðyÞÞ; which implies

u2ðxÞðuðwÞ � uðyÞÞ < uðxÞðuðwÞ � uðyÞÞðuðwÞ þ uðyÞÞ;

then

uðxÞ < uðwÞ þ uðyÞ: ð3:8Þ

From (3.7) u2ðzÞðuðwÞ � uðyÞÞ > uðzÞðu2ðwÞ � u2ðyÞÞ; which implies
u2ðzÞðuðwÞ � uðyÞÞ > uðzÞðuðwÞ � uðyÞÞðuðwÞ þ uðyÞÞ; then

uðzÞ > uðwÞ þ uðyÞ: ð3:9Þ

From (3.8) and (3.9) we get uðzÞ > uðxÞ which contradicts uðzÞ < uðxÞ ob-
tained in (3.5).

Case 2: uðwÞ < uðyÞ ) uðxÞ < uðzÞ:
From (3.6), we obtain u2ðxÞðuðwÞ � uðyÞÞ < uðxÞðu2ðwÞ � u2ðyÞÞ; which im-

plies

uðxÞ > uðwÞ þ uðyÞ: ð3:10Þ

From (3.7), we obtain u2ðzÞðuðwÞ � uðyÞÞ > uðzÞðu2ðwÞ � u2ðyÞÞ; which im-
plies

uðzÞ < uðwÞ þ uðyÞ: ð3:11Þ

From (3.10) and (3.11) we get uðzÞ < uðxÞ which contradicts uðzÞ > uðxÞ:
Case 3: uðwÞ ¼ uðyÞ:
From (3.6), we get u2ðxÞuðyÞ � uðxÞu2ðyÞ > a2 P u2ðxÞuðyÞ � uðxÞu2ðyÞ which

contradicts a > 0. �
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Theorem 3.1 shows the conditions for P to be an interval order. However,
we could not prove the inverse statement which remains an open problem.

Example 1. An interval order P having a numerical representation as stated in
Theorem 3.1 is not in general a semiorder. This can be shown by the following
example: Let uðxÞ ¼ 1; uðyÞ ¼ 0:8; uðzÞ ¼ 0:5; uðwÞ ¼ 0:01 and a ¼ 0:1. Then it
is easily seen that xPyPz but xP cw and wP cz.

Theorem 3.2. Let P have a numerical representation with error of type (2.2).
Here the function uð�Þ is positive, dð�; �Þ is multiplicative, i.e., 8x; y; dðx; yÞ ¼
eðxÞ � eðyÞ; and the function eðxÞ depends on uðxÞ such that eðxÞ ¼ auðxÞ with
a > 0. Then P is a semiorder.

Proof.

(i) P is irreflexive. Since eðx; xÞ ¼ eðxÞ � eðxÞ ¼ a2u2ðxÞ > 0; then dðx; xÞ > 0 ¼
uðxÞ � uðxÞ: Thus xP cx:

(ii) P satisfies strong intervality. Assume on the contrary xPy ^ zPw ^ xP cw^
zP cy. Then

uðxÞ � uðyÞ > a2uðxÞuðyÞ; ð3:12Þ
uðzÞ � uðwÞ > a2uðzÞuðwÞ; ð3:13Þ
uðxÞ � uðwÞ6 a2uðxÞuðwÞ; ð3:14Þ
uðzÞ � uðyÞ6 a2uðzÞuðyÞ: ð3:15Þ

Inequalities (3.12) and (3.14) imply that

uðyÞ < uðxÞ
1þ a2uðxÞ 6 uðwÞ ) uðyÞ < uðwÞ:

Inequalities (3.13) and (3.15) imply that

uðwÞ < uðzÞ
1þ a2uðzÞ 6 uðyÞ ) uðwÞ < uðyÞ;

a contradiction.
(iii) P is semitransitive. Assume on the contrary xPy ^ yPz ^ xP cw ^ wP cz.

Then

uðxÞ � uðyÞ > a2uðxÞuðyÞ; ð3:16Þ
uðyÞ � uðzÞ > a2uðyÞuðzÞ; ð3:17Þ
uðxÞ � uðwÞ6 a2uðxÞuðwÞ; ð3:18Þ
uðwÞ � uðzÞ6 a2uðwÞuðzÞ: ð3:19Þ

Inequalities (3.16) and (3.18) imply that
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uðyÞ < uðxÞ
1þ a2uðxÞ 6 uðwÞ:

Then uðyÞ < uðwÞ; add a2uðwÞuðyÞ to both sides,

a2uðwÞuðyÞ þ uðyÞ < uðwÞ þ a2uðwÞuðyÞ;

from this, we obtain

uðyÞ
1þ a2uðyÞ 6 uðzÞ6 uðwÞ

1þ a2uðwÞ :

At the same time, (3.17) and (3.19) imply that

uðyÞ
1þ a2uðyÞ P uðzÞP

uðwÞ
1þ a2uðwÞ ;

i.e., we obtain a contradiction. �

Theorem 3.3. Any semiorder P has a numerical representation with error of type
(2.2). Here the function uð�Þ is positive, dð�; �Þ is multiplicative, i.e., 8x; y;
dðx; yÞ ¼ eðxÞ � eðyÞ; and the function eðxÞ depends on uðxÞ such that eðxÞ ¼ auðxÞ
with a > 0:

Proof. Before we start to prove this, let us construct the partitions that define
the structure of an interval order (see, e.g. [16]).

Strong intervality condition ð8x; y; z;w 2 A; xPy and zPw ) xPw or zPyÞ
implies that 8x; y 2 A; LðxÞ � LðyÞ or LðyÞ � LðxÞ, where LðxÞ is the lower
contour set of x with respect to P, i.e., LðxÞ ¼ fy 2 A jxPyg. Irreflexivity indi-
cates that there is a chain with respect to the lower contour sets, i.e., relabel
elements of A; jAj ¼ n such that LðxiÞ � LðxjÞ for all 16 i6 j6 n: Moreover,
we can have strict inclusions such that there exists s6 n such that
; ¼ Lðx1Þ � Lðx2Þ � � � Lðxs�1Þ � LðxsÞ, where fx1; x2; . . . ; xsg � A:

Define

Ik ¼ x 2 A jLðxkÞf ¼ LðxÞg k ¼ 1; . . . ; s:

Ik is not empty for any k since xk 2 Ik by construction. Clearly, the system fIkgs1
is a partition of the set A, i.e.,

Ss
k¼1 Ik ¼ A; Ik \ Ik ¼ ; when k 6¼ l. Now con-

struct another family of non-empty sets fJmgs1; as follows:
J1 ¼ Lðx2Þ n Lðx1Þ;
J2 ¼ Lðx3Þ n Lðx2Þ;

..

.

Js�1 ¼ LðxsÞ n Lðxs�1Þ;
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Js ¼ A n
[s�1

m¼1

Jm:

Clearly, the system fJmgs1 is a partition of the set A, i.e.,
Ss

m¼1 Jm ¼ A;
Jk \ Jm ¼ ; when k 6¼ m. Then any interval order P can be represented as

P ¼
[s
k¼2

Ik

"
�

[k�1

m¼1

Jm

#

with the restriction

Ik �
[s
m¼k

Jm:

Now define fZk;mgk¼1;...;s;m¼1;...;s s.t. Zk;m ¼ Ik \ Jm: Let PB be a binary relation
on B � A such that PB ¼ P \ ðB� BÞ:

Claim 1. If P is a semiorder on A, then PB is also a semiorder on B � A:

Proof of Claim. Clearly PB � P .

8x; y; z;w 2 B xPBy ^ zPBw ) xPy ^ zPw since PB � P

) xPw _ zPy since P is a semiorder

) xPBw _ zPBy since x; y; z;w 2 B

and

8x; y; z;w 2 B xPByPBz ) xPyPz since PB � P

) xPw _ wPz since P is a semiorder

) xPBw _ wPBz sincex; y; z;w 2 B:

Therefore PB is a semiorder. �

We will prove the following lemma that will be used in the proof of the
theorem.

Lemma 1. Let P be a semiorder which has a numerical representation as stated in
the theorem. Then
(i) x 2 Zk;m ^ y 2 Zk;m�1 ) uðxÞ > uðyÞ and
(ii) x 2 Zk;m ^ y 2 Zk�1;m ) uðxÞ > uðyÞ:

Proof of Lemma.

(i) If y 62 Zk;m then 9z
zPy ^ zP cx: ð3:20Þ
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By (3.20),

uðzÞ � uðyÞ > a2uðzÞuðyÞ ^ uðzÞ � uðxÞ6 a2uðxÞuðyÞ

) uðzÞ > uðyÞð1þ a2uðzÞÞ ^ uðzÞ6 uðxÞð1þ a2uðzÞÞ
) uðxÞ � uðyÞ > 0:

(ii) If y 62 Zk;m then 9z
xPz ^ yP cz: ð3:21Þ

By (3.21),

uðxÞ � uðzÞ > a2uðzÞuðxÞ ^ uðyÞ � uðzÞ6 a2uðzÞuðyÞ

) uðzÞ < uðxÞð1� a2uðzÞÞ ^ uðzÞP uðyÞð1� a2uðzÞÞ

we know that xPz. It means that

uðxÞ � uðzÞ > a2uðzÞuðxÞ ) 0 < uðzÞ < uðxÞð1� a2uðzÞÞ

) ð1� a2uðzÞÞ > 0 since 0 < uðxÞ

) uðyÞ6 uðzÞ=ð1� a2uðzÞÞ < uðxÞ
) uðxÞ � uðyÞ > 0: �

By induction,
jAj ¼ 1;A ¼ fxg. Define uðxÞ is equal to 1 and a ¼ 1. Hence any semi-

order P on A has a numerical representation with error of type (2.2). Here
the function uð�Þ is positive, dð�; �Þ is multiplicative, i.e., 8x; y; dðx; yÞ ¼
eðxÞ � eðyÞ; and the function eðxÞ depends on uðxÞ such that eðxÞ ¼ auðxÞ with
a > 0:

jAj ¼ n� 1. Assume that any semiorder P on A has a numerical represen-
tation which satisfies all conditions which are given above and if x cannot beat
y then uðxÞ � uðyÞ < a2uðxÞuðyÞ: We called the semiorder P has a strict nu-
merical representation with error of type (2.2).

Show that any non-trivial semiorder P on A which has n elements has a
strict numerical representation which satisfies all the conditions given above.

Take a semiorder P on A such that jAj ¼ n:
If there is a Zk;m which has two elements, we can erase one of these element,

called it x, from P to get PB. In this case, IBk ¼ Ik and JB
m ¼ Jm for all m; k6 s

where IBk and JB
m are the partitions with respect to PB: We know that PB has a

strict representation by the induction step. Then set the utility value of element
x which is erased equal to the other element which belongs to the same par-
tition with x. To be more precise, If 9k;m 2 f1; 2; . . . ; sg such that jZk;mj > 1
then consider a binary relation PB on B ¼ A n fxg where x 2 Zk;m. We know that
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PB is a semiorder by the claim. By induction step, PB on B has a strict numerical
representation with error of type (2.2). There exists a positive function uBð�Þ, a
dð�; �Þ multiplicative, i.e., 8x; y; dBðx; yÞ ¼ eBðxÞ � eBðyÞ; and a function eBðxÞ
which depends on uBðxÞ such that eBðxÞ ¼ auBðxÞ with aB > 0. We need to find a
function uð�Þ and a > 0 to represent P . Define uð�Þ; 8x 2 B; uðxÞ ¼ uBðxÞ and
uðxÞ ¼ uBðyÞ where x 6¼ y 2 Zk;m. By assuming a ¼ aB, we can easily show that P
on A has a strict numerical representation that satisfies all the conditions given
above.

So we will assume 8k;m 2 f1; 2; . . . ; sg such that jZk;mj6 1: In other words,
there are no two elements which have the same upper and lower contour sets.
When we erase the element of Z1;1, denote it by x1 2 Z1;1, from P to get PB where
B ¼ A n fx1g: Thus the number of IBk and JB

m decrease by 1. Next step shows
what the relationships among IBk ; Ik,J

B
m and Jm are.

Let us derive some equalities about ZB
k;m for all k;m 2 f1; 2; . . . ; s� 1g which

will be useful later:

IBk ¼ Ikþ1 for all 1 < k6 s� 1; ð3:22Þ

IB1 ¼ ðI1 [ I2Þ n fx1g for all k ¼ 1 where x1 2 Z1;1; ð3:23Þ

JB
m ¼ Jmþ1 for all m6 s� 1: ð3:24Þ

Proof. We have ; ¼ Lðx1Þ � fx1g ¼ Lðx2Þ � � � Lðxs�1Þ � LðxsÞ since we assumed
8k;m 2 f1; 2; . . . ; sg such that jZP

k;mj6 1. After deleting x1 2 Z1;1; it becomes
; ¼ Lðx1Þ n fx1g ¼ Lðx2Þ n fx1g � Lðx3Þ n fx1g � � � Lðxs�1Þ n fx1g � LðxsÞ n fx1g:
Rename elements of B such that LBðy1Þ � LBðy2Þ � � � LBðys�2Þ � LBðys�1Þ since
Lðx1Þ n fx1g ¼ Lðx2Þ n fx1g ¼ ;: It means that the number of IBk ’s decreases
by 1.

8x 2 IBk () LBðxÞ ¼ LBðykÞ ¼ Lðxkþ1Þ

() x 2 Ikþ1 for all 1 < k6 s� 1:

When

k ¼ 1; x 2 IB1 () ; ¼ LBðxÞ ¼ LBðy1Þ ¼ Lðx1Þ ¼ Lðx2Þ n fx1g
() x 2 ðI1 [ I2Þ n fx1g:

To prove the last statement,

8m6 s� 2 JB
m ¼ LBðymþ1Þ n LBðymÞ

) JB
m ¼ ðLðxmþ2Þ n fx1gÞ n ðLðxmþ1Þ n fx1gÞ

¼ Lðxmþ2Þ n Lðxmþ1Þ ¼ Jmþ1:
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We have JB
m ¼ Jmþ1

8m < s� 1 )
[s�2

m¼1

JB
m ¼

[s�1

m¼2

Jm

) JB
s�1 ¼ ðA n fx1gÞ n

[s�2

m¼1

JB
m

¼ ðA n fx1gÞ n
[s�1

m¼2

Jm ¼ A n
[s�1

m¼1

Jm ¼ Js:

Eqs. (3.22)–(3.24) imply that ZB
k;m ¼ Zkþ1;mþ1 for all k;m 2 f2; . . . ; s� 1g and

maxk;m2f1;2;...;s�1g jZB
k;mj6 2 since jZk;mj6 1 for all k;m 2 f1; 2; . . . ; sg. Moreover,

ZB
k;m may differ from Zkþ1;mþ1 only if k is equal to 1.
By there are two possible cases:

1. 9m 2 f1; 2; . . . ; s� 1g such that jZB
1;mj ¼ 2;

2. 8m 2 f1; 2; . . . ; s� 1g such that jZB
1;mj6 1:

Case 1: Assume 9m 2 f1; 2; . . . ; s� 1g such that jZB
1;mj ¼ 2: It implies that

jZ1;mþ1j ¼ jZ2;mþ1j ¼ 1; t 2 Z1;mþ1 and y 2 Z2;mþ1: We want to show that 8m >
mþ 1; Z1;m ¼ ;. Assume there exists an m > mþ 1 such that jZ1;mj ¼ 1;
z 2 Z1;m: Take w 2 Im; we know that wPyPx1 (since x1 is in J1 and y is in
Jmþ1Þ; wP cz (since w 2 Im and z is in JmÞ and zP cx1 (since z is in I1Þ: It con-
tradicts that P is a semiorder. Therefore, jZB

1;mj ¼ 2 implies jZ1;mj ¼ 0 for all
m > mþ 1: This fact shows that if there exist m such that jZB

1;mj ¼ 2 then it must
be unique. It means that 8m > mþ 1; Z1;m ¼ ; and Z2;m ¼ ; for all m < mþ 1:
To prove the latter statement, assume there exists an m < mþ 1 such that
z 2 Z2;m: Take w 2 Jmþ1; we know that wPzPx1 (since x1 is in J1 and z is in
I2Þ; wP ct (since w 2 Imþ1 and t is in Jmþ1Þ and tP cx1 (since t is in I1Þ:

We know that PB is a semiorder by Claim 1. So there exists a positive
function uBð�Þ, a dð�; �Þ multiplicative, i.e., 8x; y; dBðx; yÞ ¼ eBðxÞ � eBðyÞ; and a
function eBðxÞ which depends on uBðxÞ such that eBðxÞ ¼ aBuBðxÞ with aB > 0.
They represent PB on B.

So 9!m 2 f1; 2; . . . ; s� 1g such that jZB
1;mj ¼ 2:

Let t; y be the elements of ZB
1;m; i.e., t 2 Z1;mþ1 and y 2 Z2;mþ1: Assume

uBðtÞ ¼ uBðyÞ since t; y 2 ZB
1;m; otherwise set the utility value of y is equal to the

maximum of uBðtÞ and uBðyÞ:
We want to define wð�Þ on A such that wðxÞ ¼ uðxÞ=ð1þ a2uðxÞÞ: It can be

easily seen that if wðxÞ is less (greater) than uðyÞ then xP cy ðxPyÞ: Moreover
wðxÞ < uðxÞ for all x 2 A:

Let z be the element of ZB
m;m where m is the highest integer such that the

intersection of IBm and JB
m is not empty. We know that z is different from y since

n > 2. Since z cannot beat y and PB on B has a strict numerical representation;
uBðzÞ � uBðyÞ < ðaBÞ2uBðzÞuBðyÞ: This implies uBðzÞ=ð1þ ðaBÞ2uBðzÞÞ is strictly
less than uBðyÞ, in other words wBðzÞ < uBðyÞ: Define

Y. Masatlıoĝglu / Information Sciences 144 (2002) 187–200 197



uðxÞ ¼
uBðxÞ if x 2 B n ftg;
d if x ¼ t;
c if x ¼ x1;

8<
:

where wBðzÞ < d < uBðyÞ and wBðyÞ > c < d=ð1þ ðaBÞ2dÞ: To be more
precise,

wðtÞ < uðx1Þ < wðyÞ and wðzÞ < uðtÞ < uðyÞ: ð3:25Þ

We want to show that uð�Þ strictly represents P on A when a ¼ aB:We do not
need to check elements of B n ftg since nothing has changed. Let us start with
x1:

If w 2 Uðx1Þ; uBðyÞ < uBðwÞ since y ¼ arg minw2Uðx1Þu
BðwÞ

) uðx1Þ < wðyÞ6wðwÞ since ð3:25Þ

) uðwÞ � uðx1Þ > a2uðx1ÞuðwÞ

) wPx1:

If w 2 A n Uðx1Þ; uBðyÞ > uBðwÞ by lemma. Since yP cw; we have uðwÞ > wðyÞ:
By (3.25) uðx1Þ < wðyÞ < uðwÞ: Hence x1P cw:

If w 2 UðtÞ; we know that UðtÞ ¼ UðyÞ since t 2 Z1;mþ1 and y 2 Z2;mþ1: We
have uðyÞ < wðwÞ since wPy ) uðtÞ < uðyÞ < wðwÞ: Therefore wPt:

If w 2 A n UðtÞ; then wðwÞ < uðtÞ and wðx1Þ < uðx1Þ < wðyÞ < uðtÞ by defi-
nition of uðtÞ and (3.25). Hence wP ct: And we have wðyÞ < uðwÞ since yP cw: By
(3.25) wðtÞ < uðx1Þ < wðyÞ < uðwÞ: Hence tP cw:

Case 2: Assume 8m 2 f1; 2; . . . ; s� 1g such that jZB
1;mj6 1: Find a real

number c such that wBðzÞ < c < wBðzÞ where z ¼ arg minw2Uðx1Þ u
BðwÞ and

z ¼ maxw2AnUðx1Þ u
BðwÞ: Define

uðxÞ ¼ uBðxÞ if x 2 B;
c if x ¼ x1

�

and a ¼ aB: Similar to Case 1, P on A has a strict numerical representation that
satisfies all the conditions given above. �

Example 2. Let A ¼ fa; b; c; dg and consider the interval order P ¼ fða; bÞ;
ðb; dÞ; ða; dÞg. It cannot have a numerical representation with error of type (2.2)
where the function uð�Þ is positive, dð�; �Þ is multiplicative, i.e., 8x; y;
dðx; yÞ ¼ eðxÞ � eðyÞ; and the function eðxÞ which depends on uðxÞ such that
eðxÞ ¼ auðxÞ with a > 0. Since P is an irreflexive binary relation, without loss of
generality we can assume that the utility value of each alternative is non-
negative:

bPd ^ c not Pd () uðbÞ � uðdÞ > a2uðbÞuðdÞ
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and

uðcÞ � uðdÞ6 a2uðcÞuðdÞ $ uðbÞ � uðdÞ
a2uðbÞ > uðdÞP

uðcÞ � uðdÞ
a2uðcÞ

() uðbÞ > uðcÞ:

This implies that uðaÞ � uðbÞ < uðaÞ � uðcÞ. We have a2uðaÞuðbÞ < a2uðaÞuðcÞ
since aPb ^ aP cc. So we find uðbÞ < uðcÞ which contradicts with the previous
result.

Remark 1. It can be easily shown that any weak order (semiorder which
satisfies negative transitivity condition: i.e., 8x; y; z 2 A; xP cyP cz ) xP cz) has
the representation given by (2.2) with a multiplicative error function
and eðxÞ ¼ auðxÞ or eðxÞ ¼ a=uðxÞ; a > 0. Indeed, let us consider the error of
the form eðxÞ ¼ auðxÞ. Weak order P is defined by the partition fZmgn1 such
that

xPy iff x 2 Zi; y 2 Zj and i > j:

If we choose a to be a ¼ 1=n, and uðxÞ to be equal to i if x 2 Zi, then for two
elements in different classes Zi and Zj; e will be less than 1, and for two elements
from the same class e will be equal to 1.

For the second type of error function one can choose a to be equal to 1. It
can be shown that this function e satisfies the necessary requirement.

4. Conclusions

It has been proven that a binary relation has a numerical representation with
a multiplicative error function, its value being inversely proportional to the
value of the numerical function when it is an interval order. The form of the
error function here corresponds to the case where we cannot differentiate be-
tween the alternatives with small numerical values.

Another form the error function can take is that the value of the error varies
proportionally with the numerical values. In this case stronger results can be
stated. The binary relation under question becomes a semiorder, and any
semiorder can be represented in this form. It is worth noting that in the case of
an additive error function the following result is obtained [7]: the binary re-
lation is represented via an additive error function if and only if it is an interval
order.

Using the results above, it is now possible to represent numerically situa-
tions in which the preferences of the actors can be indifferent because of their
specific circumstances that result in varying forms of rationality.
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